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Fully nonlinear evolution of a cylindrical vortex sheet in incompressible Richtmyer–Meshkov
instability
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Fully nonlinear motion of a circular interface in incompressible Richtmyer–Meshkov instability is investi-
gated by treating it as a nonuniform vortex sheet between two different fluids. There are many features in
cylindrical geometry such as the existence of two independent spatial scales, radius and wavelength, and the
ingoing and outgoing growth of bubbles and spikes. Geometrical complexities lead to the results that nonlinear
dynamics of the vortex sheet is determined from the inward and outward motion rather than bubbles and
spikes, and that the nonlinear growth strongly depends on mode number.
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The classical Richtmyer–Meshkov instability �RMI� �1�
develops when a shock wave collides with a corrugated
interface separating two different fluids. This instability is
driven by the nonuniform vorticity left by the shock at
the interface and in the fluids �2�. Namely, during the
transition of the incident shock through the corrugated
interface, the corrugation of the interface causes ripples
on the fronts of transmitted and reflected shocks �or rarefac-
tion wave�, and the ripple of the fronts induces shear flow
at the interface. A wide class of instabilities, not included
in the shock-interface interaction, is still driven by the
nonuniform vorticity on the interface, either initially
deposited or supplied by external sources �3�. For example,
in the experiments �4� shear flow was induced at an interface
between incompressible fluids during the acceleration of a
fluid container by a spring with a short but finite time
duration. Also, in �5� nonuniform laser ablation caused shear
flow at the ablation surface in laser implosions. These insta-
bilities, caused by the nonuniform vorticity at the interface,
are important in various areas such as astrophysical
explosion, combustion, and inertial fusion implosions.
We consider the nonlinear evolution of a nonuniform vortex
sheet between different fluids in cylindrical geometry.
The density ratio between the fluids essentially determines
the nonlinear evolution of the instability due to the baroclinic
effect. Moore et al. �6� showed that no disturbance grows
for an expanding vortex sheet with uniform vorticity
between the same fluids, a situation which corresponds to the
Kelvin–Helmholtz instability.

Most previous works are focused on planar geometry
�7–9� with only a few dealing with the effect of convergence
in cylindrical geometry �10,11�. In addition to the conver-
gence effects there are many features in cylindrical geometry,
such as the existence of two independent spatial scales,
i.e., the radius and wavelength, and also the ingoing
and outgoing motion of bubbles and spikes. We will
show that these geometrical complexities essentially
determine fully nonlinear growth of the instability. In the
nonlinear phase, the vortex interaction is nonlocal. There-
fore, the interaction in cylindrical geometry may not be
the same as that in an infinite periodic planar case. As will

be shown, the nonlinear evolution of the vortex sheet is
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quite different for modes 1, 2, and higher. Here, we restrict
ourselves to inviscid and incompressible fluids, and neither
implosion nor explosion of the circular interface. Also, initial
vorticity is nonuniformly distributed only at the interface.
Despite these restrictions the study reveals many features of
the nonlinear growth in cylindrical geometry.

The Bernoulli equation leads to the following equation for
the circulation � on the interface �8,9�

d�

dt
= 2A

d�

dt
− Aq · q +

A − 2�

4
� · � + �A� · q , �1�

where q= �u1+u2� /2 is an average of the velocities of two
fluids at the interface, which is related to the average velocity
potential, �= ��1+�2� /2 with q=��, where �i�i=1,2� and
ui=��i are the velocity potential and the velocity of each
fluid, respectively. The velocity potential satisfies ��i=0
in each region. The subscripts i=1 and i=2 correspond to
the inner and outer fluids. We define the Atwood number as
A= ��2−�1� / ��1+�2� for two fluid densities �i. Therefore,
A�0 and A	0 correspond to a case of light inner fluid
and heavy outer fluid, and vice versa. The circulation
�=�1−�2 is related to the vorticity per unit length on the
vortex sheet � and the sheet strength �circulation density� 

as �=−n���=−n�=
êz. The gradient is taken along
the interface in the �r ,�� plane, and n and êz are unit
vectors normal to the interface, and the z direction, respec-
tively. The Lagrange differentiation d /dt in Eq. �1� is defined
as d /dt=� /�t+ ū ·�, where ū=q+�� /2. The artificial pa-
rameter � is a weighting factor, such that �=0 for A=0, and
��0 for A�0 �12�. The circulation is, therefore, conserved
for the case of A=0. The factor � is related to the definition
of the tangential velocity of the interface. Any values of the
factor � satisfy the continuity condition of the normal veloc-
ity at the interface.

In the cylindrical coordinates �r ,��, the vortex-induced
velocity, which equals the average velocity of the interface q,
is given by

qr =
− 1

2
�

0

2 
��r� sin�� − ����s��d��

r2 − 2rr� cos�� − ��� + r�2 ,
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q� =
1

2
�

0

2 
��r − r� cos�� − ����s��d��

r2 − 2rr� cos�� − ��� + r�2 , �2�

from the Biot–Savart law. Here, � is a Lagrangian parameter
that parametrizes the interface as �r��� ,�����, and s is the
arc length of the interface, s�=�r�

2 +r2��
2 , where the

subscript denotes the differentiation with respect to the vari-
able. In Eqs. �2�, the variables with the prime denote that
they are functions with respect to ��. The interface velocity

u= �ur̄ ,u�̄� is then given as

rt � ur̄ = qr +
�
r�

2s�

,

r�t � u�̄ = q� +
�
r��

2s�

, �3�

following the planar case �12�, where t denotes time. Equa-
tion �3� corresponds to the Birkhoff–Rott equation �15�. Dif-
ferentiating Eq. �1� with respect to � and taking the relation
of 
=�� /�s=�� /s� �15� into account, we obtain the follow-
ing Fredholm integral equation of the second kind:


t = −
2A

s�

�r�qt
r + r��qt

�� −
�1 − �A�

s�
2 
��r�q�

r + r��q�
��

+ �rqr��
2 − r���q��� −

A − �

4s�

�
2��. �4�

This equation coincides with the Euler equation when we
choose the factor as �=−A �8�.

By solving Eqs. �3� and �4� numerically, we can determine
nonlinear motion of the nonuniform cylindrical vortex sheet
between different fluids. It should be noted that Eqs. �3� and
�4� are invariant for the normalization of r /r0, tv0 /r0, and
v /v0, where r0 and v0 are the initial radius of the interface
and the initial growth rate, respectively. The initial growth
rate v0 corresponds to the linear growth rate of RMI for the
wavelength of �=2r0 /n with the mode number n. Through-
out the paper we use above normalization otherwise speci-
fied. This invariance may be related to the scaling law of
RMI in cylindrical geometry found by Zhang et al. �11�. The
authors have shown with the use of hydrodynamic simula-
tions that the nonlinear growths of RMI scaled by the inci-
dent shock speeds, i.e., v�t̃� /vs are the same in terms of the
scaled time, t̃= tvs /r0, for various high Mach numbers of the
incident shock. Since Zhang et al. fixed the mode number,
the Atwood number, and the initial amplitude of the interface
corrugation, the linear growth rates were determined
only from the incident shock speed. The linear growth rates
are roughly proportional to the incident shock speed for the
high Mach numbers examined in their simulations, as
pointed out by Wouchuk �16�. Therefore, the nonlinear
growth of RMI can be also scaled by the incident shockspeed
for their simulation conditions.

However, the nonlinear growth of RMI in cylindrical ge-
ometry depends strongly on the mode number, because of the
existence of the two independent spatial scales. We, here,
discuss the fully nonlinear evolution of the instability up to
055304
the normalized time t=2 for various modes and different
Atwood numbers. The linear growth rate of RMI is propor-
tional to the corrugation amplitude, normalized by its wave-
length. However, if the initial amplitude of the corrugation is
much smaller than its wavelength, then the fully nonlinear
evolution of the interface does not much depend on the ini-

FIG. 1. Interfacial profiles for several modes: �a� n=1, �b�
n=2, �c� n=3, �d� n=8 for A=0.2, and �e�–�f� for the same modes
for A=−0.2, where all dashed lines depict t=0. The dot-dashed lines
in �a� and �e� depict t=0.3, while those lines in others depict
t=0.8. The solid lines in �a� and �e� depict t=0.52, �b� and �f� show
t=1.25, and others show t=2.0. All box sizes in the figures are
�x � �2.0 and �y � �2.0. The letters “H” and “L” denote heavy and
light fluids, respectively. The dots indicate the origin.
tial amplitude �9�. As a result, we consider no corrugation of
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the initial interface, but only the initial nonuniform velocity
shear, corresponding to the initial growth rate, v0, at the in-
terface. The initial normalized conditions are then given as:
r�� ,0� /r0=1, ��� ,0�=�, 
�� ,0� /v0=2 sin�n�� for the
mode number n.

When we calculate the nonlinear dynamics of the vortex
sheet up to the rollup, we regularize the denominators in Eqs.
�2� as r2−2rr� cos��−���+r�2+�2 with a regularized param-
eter ��1 introduced by Krasny �13�. This regularization
with ��0, called the vortex method, enables us to compute
up to the fully nonlinear stage. However, the numerical result
deviates from the analytical solution of the Euler equation.
This deviation appears clearer at the initial stage, because the
perturbation amplitude is initially very small. In order to
avoid this deviation, we adopt the alternate point quadrature
method, presented by Sidi and Israeli �14� for computations,
in which we can set �=0. When we use this method, we
choose the parameter �=−A for A�0 and �=A for A	0. In
calculations when ��0, we choose �=−A2 and �=A2 for
A�0 and A	0, respectively. The number of grid points N in
the computations is taken as N=256n for the mode number
n. For details of the methods in numerical calculations, refer
to Ref. �9�.

Figure 1 shows the temporal evolution of the interfacial
profiles for various modes n=1, 2, 3, and 8, and the Atwood
numbers A= ±0.2. Here we take the regularized parameter
�=0 and �=0.1 in the calculations for mode n=1 and the
others, respectively. For A�0 �A	0�, the outgoing parts
�= �2m� /n, and the ingoing parts �= �1+2m� /n�m
=0, . . . ,n−1�, correspond to bubbles �spikes� and spikes
�bubbles�. The interface does not cross the origin for any of
the modes in the incompressible cylindrical fluid, since the
velocity potential is given as �1� �r /r0�n cos n� �r	r0�,
�2� �r /r0�−n cos n� �r�r0�, so the modes diverge when the
interface approaches the origin, which also causes break-

FIG. 2. Growth rates of bubbles and spikes for various modes:
�a� and �c� A=0.2; �b� and �d� A=−0.2. The dot-dashed, dashed,
solid, and solid with circles lines denote n=1, 2, 3, and 8,
respectively.
down of the calculation.
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The interface of mode n=1 does not roll up, which may
relate to the fact that the strong concentration of the vorticity
�
 in our calculations�, that leads to the rollup, does not
occur for mode n=1. The rollup of the interface begins ap-
proximately at the same normalized time of t=1.0–1.2 for
all modes n�2. In the planar case the interface rollup begins
approximately at tp=2v0t /�=nv0t /r0=2.4–2.5. Therefore,
the rollup in cylindrical geometry begins earlier than that in
the planar one for lower modes n�3, but later for higher
modes n�4.

In a planar case, the profiles of bubbles and spikes are
quite different from each other. However, as shown in Fig. 1,
the profile of the outgoing bubbles �ingoing spikes� for
A�0 is not so different from those of the outgoing spikes
�ingoing bubbles� for A	0. The interface profile in cylindri-
cal geometry is, therefore, determined mainly from either
outgoing or ingoing growth, regardless of the bubbles and
spikes. The interface profiles at t=2.0 in Fig. 1 are also quite
similar for n�3. These results indicate that the fully nonlin-
ear evolution of the growth in the cylindrical geometry is
scaled by the initial growth rate v0 and radius, instead of by
the perturbation wavelength.

We show the nonlinear growth rates of bubbles and spikes
for the same modes and A= ±0.2 in Fig. 2. We used �=0 for
the calculations of n=1, and at the early stage shown in Figs.
2�a� and 2�b� for other modes. We used �=0.1 otherwise.
The calculations with �=0 break down at early times for the
higher modes. The breakdown times are almost the same as
those in a planar case, if time is normalized by the wave-
length. In a planar case, the nonlinear growth rate of the
spike becomes larger than that of the bubble. However, in
cylindrical geometry regardless of bubble and spike, the ab-
solute values of the ingoing growth in Figs. 2�a� and 2�b�
become once greater than the initial growth rate, and are
larger than those of the outgoing growth that decreases
monotonically. Namely, the growth rates are determined
from the outgoing or ingoing motion rather than from bubble
or spike, even for early stages.

At the fully nonlinear stages �c� and �d�, the ingoing
growth rates decrease very rapidly and tend to zero nearly at
the normalized time of t=2 independently of modes, while
the outgoing growth rates decrease more slowly and remain
at relatively large values even at t=2. The ingoing growth
rates decrease more rapidly for the higher modes. The out-

FIG. 3. Peak-to-valley amplitudes of various modes for �a�
A=0.2 and �b� A=−0.2. The dot-dashed, dashed, solid, and solid
with circles lines denote n=1,2 ,3, and 8, respectively.
going growth rates remain at larger values at t=2, especially
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for the lower modes. It should be also noted that the nonlin-
ear growth of the outgoing spikes is larger than that of the
outgoing bubbles in the fully nonlinear stage, even for cylin-
drical geometry. This difference of the growth rates between
the outgoing bubble and spike can be also seen in Fig. 1 by
comparing solid lines and dot-dashed lines between the cases
of A�0 and A	0. The nonlinear growth of the ingoing
spikes is also larger than that of the ingoing bubble as shown
in Fig. 1, although its difference is smaller than that of the
outgoing growth rates.

The peak-to-valley �PV� amplitudes of the perturbation
normalized by the wavelength, �rmax−rmin� /�, are shown in
Fig. 3, with respect to the normalized time for A= ±0.2. The
difference of the initial growth of the amplitudes among the
modes in Fig. 3 is attributed to time normalization. If we use
time normalized by the wavelength instead of the radius,
they are the same. In cylindrical geometry the higher modes
have the larger PV amplitudes normalized by the wavelength
even for the same linear growth rates. However, if the am-

plitudes are normalized by the initial radius r0, the lower
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modes have the larger amplitudes, as also seen in their pro-
files in Fig. 1. The larger amplitudes for A	0 compared with
those for A�0 are due to the larger growth rate of the out-
going spikes compared with that of the outgoing bubbles.
The growth of the amplitudes decreases slowly, as expected
from the nonlinear growth rates shown in Fig. 2. It should be
noted that the PV amplitudes at time when the growth rates
start to deviate from the initial value are different among the
modes, approximately �rmax−rmin� /�=0.3,0.4, and 0.5 for
modes n=2,3, and 8, respectively, as shown in Fig. 3. The
corresponding value of the PV amplitude in planar geometry
is approximately 0.4–0.5. The time when the deviation starts
is earlier for higher modes in this normalized time.

In summary, we have investigated fully nonlinear dynam-
ics of a nonuniform vortex sheet between different fluids in
cylindrical geometry up to the normalized time of tv0 /r0=2.
The nonlinear growth is determined from the inward and
outward motion rather than from bubble and spike, and this

growth depends strongly on the mode number.
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